Using Receiver Operating Characteristic Analysis to Evaluate Large-Change Forecast Accuracy
نویسندگان
چکیده
This paper applies receiver operating characteristics (ROC) analysis to M3 Competition, micro monthly time series for one-month-ahead forecasts. Using the partial area under the curve (PAUC) criterion as a forecast accuracy measure and paired-comparison testing via bootstrapping, we find that complex methods (AutomatANN, Flores-Pearce2, Forecast ProSmart FCS, and Theta) perform best for forecasting large declines in these time series, which tended as a group to decline over time. A regression model of PAUC on a judgmental index for forecast method complexity provides further confirming evidence. We also found that a combination forecast, consisting of the median value of the top three methods, to perform better than the component methods, although not statistically so. The classification of top methods matches that obtained using conventional forecast accuracy methods in the M3 Competition―complex methods forecast these series better than simple ones.
منابع مشابه
Large-change forecast accuracy: Reanalysis of M3-Competition data using receiver operating characteristic analysis
This paper applies receiver operating characteristic (ROC) analysis to micro-level, monthly time series from the M3-Competition. Forecasts from competing methods were used in binary decision rules to forecast exceptionally large declines in demand. Using the partial area under the ROC curve (PAUC) criterion as a forecast accuracy measure and paired-comparison testing via bootstrapping, we find ...
متن کاملForecast accuracy measures for exception reporting using receiver operating characteristic curves
The exception principle of management reporting suggests that, under ordinary conditions, operational staff persons make decisions, but that the same staff refer decisions to upper-level managers under exceptional conditions. Forecasts of large changes or extreme values in product or service demand are potential triggers for such reporting. Seasonality estimates in univariate forecast models an...
متن کاملUsing Receiver Operating Characteristic (ROC) Curves to Evaluate Digital Mammography
Receiver operating characteristic (ROC) curves are frequently used to compare the accuracy of two or more imaging modalities. This paper addresses the use of ROC analysis to evaluate the speed and accuracy of digital mammography, as compared to conventional film-screen mammography.
متن کاملReceiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation
This review provides the basic principle and rational for ROC analysis of rating and continuous diagnostic test results versus a gold standard. Derived indexes of accuracy, in particular area under the curve (AUC) has a meaningful interpretation for disease classification from healthy subjects. The methods of estimate of AUC and its testing in single diagnostic test and also comparative studies...
متن کاملApplication of adjusted-receiver operating characteristic curve analysis in combination of biomarkers for early detection of gestational diabetes mellitus
Introduction: In medical diagnostic field, evaluation of diagnostic accuracy of biomarkers or tests has always been a matter of concern. In some situations, one biomarker alone may not be sufficiently sensitive and specific for prediction of a disease. However, combining multiple biomarkers may lead to better diagnostic. The aim of this study was to assess the performance of combination of bio...
متن کامل